

CONTENTS

IMP	IMPORTANT INFORMATION				
1.	SAFE	ETY INSTRUCTIONS	5		
	1.1	General			
	1.2	Safety Instructions			
2.	DEVI	/ICE DESCRIPTION	6		
	2.1	Introduction			
	2.2	S2014 Main Specifications			
	2.3	CE / EU Compliance			
	2.4	Overall Dimensions and Fixing Holes	7		
	2.5	Application Area			
	2.6	Basic Insertion Configurations	8		
	2.7	Hardware	9		
	2.8	Control elements and interfaces			
	2.9	Terminal blocks	10		
3.	DEVI	/ICE CONNECTIONS	11		
	3 1	Input/Output power connection / rated data			
	3.1	Device connections: CN2 Interface			
	3.3	Device connections: CN3 I/O control signals			
4.	OPE	RATING MODES			
5.	FUN	ICTIONS DESCRIPTION	14		
	51	Soft Start			
	5.2	Compensation and Droon functions			
	53	'Keen Alive'	15		
	54	Limiters	16		
	5.4	5 4 1 V/f Limiter			
		5.4.2 Minimum excitation current: Under Excitation limiter			
		5.4.3 Maximum excitation current: Over Excitation limiter	17		
		5.4.4 Minimum canability: O- limiter			
		$5.4.5$ Maximum capability: $O \pm limiter$	18		
		5.4.6 S2014 Configr: Limits status			
6.	WOF	RKING MODE AND REGULATIONS	19		
	۲	Automatic Voltage Regulator (AV/P)	20		
	6.2	Field Current Pogulation (ECP)			
	6.2	Demon Factor regulation (DE)			
	0.3 C 1	Power Factor regulation (PF)			
	0.4 6 F	Reactive power regulation (VAR)			
	0.5	Digital reference adjustment by calibrator (UP/DOWN)			
	0.0	Digital reference aujustment by analog inputs			

7.	OPER	ATOR INTERFACE23		
	7.1	Control keypad and display		
7.2 Navigating inside the menus		Navigating inside the menus		
	7.3	Parameters Saving		
	7.4	Menù description		
		7.4.1 Menù "D" - Display (readings)		
		7.4.2 Menù "R" - References and Regulators		
		7.4.3 Menù "I" - Inputs and Outputs 26		
		7.4.4 Menù "C" - Commands		
		7.4.5 Menù "P" - Parameters27		
8.	TROU	BLE SHOOTING28		
	8.1	First Inspection		
	8.2	Trouble shooting		
	8.3	Repairing		
9.	CONNECTION DIAGRAM			
	9.1	Introduction		
	9.2	Basic S2014 Connection Diagrams31		
	9.3	S2014 Connection Diagrams with Low Voltage Alternator		
	9.4	S2014 Connection Diagrams with Medium Voltage Alternator		
10.	BELTR	AME CONFIGURATOR: THE PC SOFTWARE		
	10.1	Connection between AVR and PC		
	10.2	Installation and Communication setup		
	10.3	Parameters setting: P.xxx and procedure35		
	10.4	Parameters Setting: L.xxx and R.xxx		
	10.5	Parameters Setting: D.xxx		
	10.6	Parameters Setting: O.xxx		
	10.7	Regulator Windows		
	10.8	Trend window		

IMPORTANT INFORMATION

Our experience has shown that, if the information and recommendations contained in this Operating Instructions are observed, the best possible reliability of our products is assured.

The data contained herein purports solely to describe the product and it is not a warranty of performance or characteristics. It is with the best interests of our customers in mind that we constantly strive to improve our products and keep them abreast of advances in technology. This may, however, lead to discrepancies between a product and its "Technical Description" or "Operating Instructions".

This document has been carefully prepared and reviewed, however should in spite of this the reader find an error, he is requested to inform us at his earliest convenience.

It is scarcely possible for the operating instructions for technical equipment to cover every eventuality, which can occur in practice. We would therefore request you to notify us or our agent in the case of all unusual behavior that does not appear to be covered by these operating instructions.

It is pointed out that all local regulations in force must be observed when connecting and commissioning this equipment in addition to these operating instructions.

We cannot accept any responsibility for damage incurred as a result of mishandling the equipment regardless of whether particular reference is made in these operating instructions or not.

All rights with respect to this document, including applications for patent and registration of other industrial property rights, are reserved. Unauthorized use, in particular reproduction or making available to third parties, is prohibited.

1. SAFETY INSTRUCTIONS

1.1 General

The safety instructions shall be followed during installation, commissioning, operation and maintenance of the excitation system. Read all instructions carefully before operating the device and keep this manual for future reference.

Required Qualification

Personnel involved in installation work and commissioning of the S2014 must be familiar, specially instructed and informed about the residual danger areas according to the regulations currently in force. Operating personnel is not permitted to work at the control system. Only specially instructed personnel must carry out maintenance and repair work. The maintenance personnel must be informed about the emergency shutdown measures and must be capable of turning off the system in case of emergency. The maintenance personnel must be instructed in first aid and firefighting.

n e n s

It is the owner's responsibility to ensure that each person involved in the installation and commissioning of the S2014 has received the appropriate training or instructions and has thoroughly read and clearly understood the safety instructions in this chapter.

1.2 Safety Instructions

The safety instructions precede any instruction in the context where a potentially dangerous situation may appear. The safety instructions are divided into three categories, and each one is introduced by a symbol with its description:

DANGER!

This symbol indicates an imminent danger resulting from mechanical forces or high voltage. A non-observance leads to life-threatening physical injury or death.

WARNING!

This symbol indicates a dangerous situation. A non-observance may lead to bad or life-threatening physical injury or death. It may cause also possible damages to the devices.

NOTICE!

This symbol emphasizes important information. A non-observance may cause damage to the device or to objects close to it.

2. DEVICE DESCRIPTION

2.1 Introduction

S2014 is a last generation Automatic Voltage Regulator for Generators excitation control. The unit contains the most advanced microprocessor technology together with IGBT semiconductor technology (Insulated Gate Bipolar Transistor).

A practical and simple-to-operate on board panel is used for all control operations. In addition, user friendly software facilitates the commissioning and allows the optimization of the performances.

2.2 S2014 Main Specifications

MECHANICAL DETAILS	Weight: Protection class: Dimensions (LxWxH)	Approx. 600 gr IP2X (limited by fast-on type terminals) 138x58x55 mm
AMBIENT CONDITION	Temperature range for operation: Temperature range for storage: Vibration:	From -20°C to +65°C From -40°C to +80 °C 5 mm, 2 G, 5 <f<150 hz<="" th=""></f<150>
	Power electronics supply:	3±300 Vac from 10 to 500Hz
ELECTRICAL DETAILS	Excitation output:	Max continuous current 8 A Current reduction for ambient temperatures > 50 °C: 1 A/degree Forcing (max 10 s): 16 A
	Frequency range:	From 10 to 500 Hz
	Accuracy	< ±0.25%
Other	Voltage inputs	Not insulated
	Ambient condition	AVR has to be protected against dust, moisture, rain

2.3 CE / EU Compliance

This product has been evaluated and complies with the relevant essential requirements requested by the EU legislation.

It complies with the following EU Directives:

- LVD 2014/35/EU;
- EMC 2014/30/EU;
- ROHS 2 2011/65/EU.

The harmonized standards used for the evaluation are:

- EN 50178 Electronic Equipment for use in Power Installations;
 - EN 61000-6-4 Electromagnetic Compatibility (EMC), Generic Standards, Emission Standard for Industrial Environments;
 - EN 61000-6-2 Electromagnetic Compatibility (EMC), Generic Standards, Immunity for Industrial Environments.

2.5 Application Area

This AVR is used for the excitation of synchronous machines. This unit is suitable for this only application area. The AVR can manage several regulations. Among them:

- Voltage regulation;
- Field Current Regulation (FCR);
- Power Factor regulation (PF);
- Reactive power regulation (VAR).

2.6 Basic Insertion Configurations

The following SLD show some basic insertion configurations of the S2014.

2.7 Hardware

Structure:

The device is assembled inside a plastic case with aluminum base, and it is fixed on a heat dissipater. The connection terminals are integrated on the top of the circuit boards.

Power electronics:

- The power circuit is designed with IGBT semiconductors.
- A fuse protects the output against short-circuits.

Control elements:

- The operating keys and the display are located on board.
- The communication port connector is located on the front of the AVR.

Installation:

- The site of installation must be dry and free of dust. The AVR can be installed in vertical or in horizontal position.

Mounting:

- The AVR must be installed inside the Generator or inside the control panel in order to obtain protection against accidental contacts. To fasten the regulator, use the 4 MA through-screws in two corners holes. It is recommendable to use self-locking nuts. It is recommended also to bind the regulator back on a metal plate for better heat dissipation.

Connection block diagram:

2.8 Control elements and interfaces

Carrying out settings on the unit

The displays and the four keys allow complete operation.

All settings can be carried out directly on the unit without additional equipment.

- Inputs and outputs configuration;
- Parameter setting;
- Selection on the display of the main measured values.

Interface with PC (see the dedicated chapter)

Parameter setting and optimization is possible using the user-friendly *S2014 Config* for Microsoft Windows. Using an USB/RS485 cable (made by Beltrame - Optional), with USB insulator, for the connection between PC and AVR, is possible to:

- Configure inputs and outputs;
- Set all parameter;
- Select on the display all the measured values;
- Download, upload, save and open config files;
- ... and a lot more.

Note: The interface is not isolated from the power supply: in order to connect with a pc or other devices an interface isolator must be used.

2.9 Terminal blocks

Overview of the device connections:

Description of the terminals:

CN2 – RS 485 Serial Interface		CN3 – Control connections	
1	GND	C1	Com
2	GND	C2	Increase reference adjust
3	-RESERVED-	C3	Decrease reference adjust
4	LINK –	C4	52G status (parallel feedback)
5	LINK +	C5	±5V analog input
6	-RESERVED-	C6	1Kohm Potentiometer input
7	-RESERVED-	C7	+6V Aux
8	-RESERVED-	C8	N.C.
Note: the	Note: the reserved pins have to be left unconnected		OUT (E)
Note: the			OUT (C)
FX1 - Po	wer connections	FX2 – Current sensing inputs	
AUX	AUX	S1	C.T. input S1
СОМ	Com	S2	C.T. input S2
+Ecc	Excitation output +		
-Ecc	Excitation output -		
Vsense	Voltage sensing input		
PE	PE	1	

3. DEVICE CONNECTIONS

Required Qualification

Personnel involved in installation work and commissioning of the S2014 must be familiar, specially instructed and informed about the residual danger areas according to the regulations currently in force.

Only specially instructed personnel must carry out maintenance and repair work.

3.1 Input/Output power connection / rated data

Terminal designation (FX1 AND FX2)	Terminals	Signal	Specifications
Power electronics supply	AUX - COM	ADC input voltage (single-phase)	3÷300 Vac 10÷500 Hz
Measurements inputs	COM - Vsense	Generator voltage	0 ÷ 500 Vrms (sensing) Not isolated versus the power supply (AUX)
	TA s1 - TA s2	Generator current	0÷5 Arms With galvanic isolation
Excitation ouput	+ECC -ECC	Excitation voltage	3÷200 VDC (<0.8 V _{AUX})
		Excitation current	0÷8 A (16 A for 10s)

3.2 Device connections: CN2 Interface

Terminal designation	Description	Diagram
Communication	Modbus RTU and proprietary protocols half duplex	S2014 CN2 [] ^{1KΩ} LINK + Q ⁵
	Not isolated from power supply	$\frac{120\Omega}{GND}$

CN2 picture:

3.3 Device connections: CN3 I/O control signals

Terminal Description		Diagram	
CN3 Digital inputs 3 programmable digital inputs • 4mA • Up / Down / programmable function • AVR/FCR/PF/VAR mode • AVR/FCR/PF/VAR mode Not isolated from power supply • Output		S2014 CN3 COM Increase Decrease Parallel feedback Analog In Potentiometer adjust +6V AUX N.C. OUT (E) OUT (C)	
CN3 Digital outputs	N.1 programmable digital output Max Load 65mA 24Vdc	S2014 CN3 COM Increase Decrease Parallel feedback Analog In Potentiometer adjust +6V AUX N.C. OUT (E) OUT (C) +24Vdc S2014 CN3 COM Increase Decrease Parallel feedback Analog In Potentiometer adjust +6V AUX N.C. OUT (C) +24Vdc	
2x Analog inputs	Not isolated from power supply	S2014 CN3 COM Increase Decrease Parallel feedback Analog In Potentiometer adjust +6V AUX N.C. OUT (E) OUT (C) Analog input: $\pm 5V$ Potentiometer input: 1kohm	

4. OPERATING MODES

S2014 allows bump less changeover between all operation modes:

5. FUNCTIONS DESCRIPTION

5.1 Soft Start

Setting the following parameters, it is possible to set up the excitation ramp of the Generator (Output Voltage vs Time):

Parameter	Description (short)	Description
P.100	Gen rated voltage	Generator rated voltage [V]
R.002	Ramp slope	Ramp slope [%/s]

The soft start function is working only in the AVR mode.

The slope of the ramp is controlled by the V/Hz limiter.

5.2 Compensation and Droop functions

The compensation function (K> 0) is used in order to reduce the voltage drop created by the possible presence of a power transformer mounted after the Generator.

The 'droop' function (K<0) is recommendable in case of operation with more generators in parallel. It applies a machine output voltage reduction according to the reactive power output. The "droop" function reduces the output voltage according the reactive power output (higher is the reactive power, lower will be the output voltage).

Compensation and droop functions require:

- AVR mode
- alternator current reading
- digital input 3 programmed as I002= 4 (52G closed + Droop regulation)

5.3 Keep Alive

This feature helps/allows the self-excitation of the Generator in case the AVR input power line is connected to the generator terminal or to a generator auxiliary winding.

With "keep alive" enabled (P.250>0), the S2014 will try to keep a minimum excitation current during the start-up.

As default P.250 is adjusted to 5. This means that the S2014, during the start-up, will try to keep the excitation current to 5% of the rated excitation current (P.000). Once the frequency will be higher the P.130 (Generator minimum frequency), the AVR will leave the "keep alive" area and will enter in the V ramp area.

In case the AVR is powered with a PMG or with an external power source the "Keep Alive" function has to be disabled (set P.250=0).

Parameter	Description (short)	Description
P.250	Keep Alive min I	% of the rated exc current (P.000) from 0Hz to P.130 Hz
P.130 Gen. V/f min freq		Generator minimum frequency (Hz)

Above screenshot shows the keep alive function effect during generator shutting down. Once the frequency drops below P.130 the AVR activates the keep alive function and works in order to maintain the excitation current to the P.250 keep alive setting (in this case 5%)

5.4 Limiters

5.4.1 V/F Limiter

The V / Hz limit is active during the voltage control phase. It works by limiting the Generator voltage as the frequency falls below the maximum frequency P.131. This operation can avoid the Generator over-flushing in case of a reduction of speed.

The relation between output voltage and frequency is:

$$V(Hz) = P. \ 100 * \frac{Hz}{P.131} * \frac{1}{P.132}$$

Parameter	Description (short)	Description
P.100	Gen. rated voltage	Generator rated voltage [V]
P.130	Gen. V/f Min freq	Generator minimum frequency ramp (Hz)
P.131	Gen. V/f Max freq	Generator maximum frequency ramp (Hz)
P.132	V/f slope	Generator V/f slope

5.4.2 Minimum excitation current: Under Excitation limiter

The limit of minimum excitation current is only active when the Generator is in parallel [digital input 52G (machine in parallel) closed]. It represents the minimum excitation current below which the Generator cannot work.

Parameter	Description (short)	Description
P.002	F. UE Lim	OE/UE Lim reg TI
r.900	OE/UE Lim reg KP	OE/UE Lim. Reg. KP
r.901	OE/UE Lim reg TI	OE/EU Lim. Reg. TI

5.4.3 Maximum excitation current: Over Excitation limiter

The limit of maximum excitation current operates a limitation on the maximum excitation current. The limit works in order to avoid to overtake the P.001 value, and if the excitation current remains on P.001 for longer than P.032, the AVR reduce the excitation current to 102%. If the excitation current goes in the area between P.000 and P.001, the AVR calculate the i*t integral and once P.001xP.032 is reached, the AVR reduces the excitation current to P.000.

Parameter	Description (short)	Description
P.100	Gen. rated voltage	Generator rated voltage [V]
P.130	Gen. V/f Min freq	Generator minimum frequency ramp (Hz)
P.131	Gen. V/f Max freq	Generator maximum frequency ramp (Hz)
P.132	V/f slope	Generator V/f slope
P.132	V/f slope	Generator V/f slope

5.4.4 Minimum capability: Q- limiter

The curve of minimum capability represents the reactive power limit absorbed by the machine. It is determined by interpolating 5 data:

Parameter	Description (short)	Description
P.160	Q – lim @ P 0%	Limit Q- a P=0%
P.161	Q – lim @ P 25%	Limit Q- a P=25%
P.162	Q – lim @ P 50%	Limit Q- a P=50%
P.163	Q – lim @ P 75%	Limit Q- a P=75%
P.164	Q – lim @ P 100%	Limit Q- a P=100%

5.4.5 Maximum capability: Q+ limiter

The curve of maximum capability represents the reactive power limit delivered by the machine. It is determined by interpolating 2 data: P.170 [%]

- Q+ limit a P=0%
- Q+ limit a P=100%

Parameter	Description (short)	Description
P.170	Q + lim @ P 0%	Limit Q+ a P=0%
P.171	Q + lim @ P 100%	Limit Q+ a P=100%

5.4.6 S2014 Config: Limits status

The S2014 Config software reports an overview of the limiters status:

The reported limiters status shows that the V/Hz (underfrequency or underspeed limiter) is active.

6. WORKING MODE AND REGULATIONS

Basically, there are 4 working modes (4 regulation mode):

- AVR [Automatic Voltage Regulator]: S2014 works in order to keep the output voltage to the ref value
- FCR [Field Current Regulation]: S2014 works in order to keep the excitation current to the ref value
- PF Control [Power Factor Regulator]: S2014 works in order to keep the PF to the ref value
- VAR Control [Reactive Power Regulator]: S2014 works in order to keep the Reactive Power to the ref value

6.1 Automatic voltage regulator (AVR)

The AVR automatically controls the output voltage at the generator terminals. This is the main working mode. The AVR function is active if **P300=1**.

As alternative it is possible to activate the AVR function programming the digital input I002=4, and closing the external contact.

Parameter	Description	Note
P.100	Generator rated voltage	V rms
r.002	Ramp slope [s]	%/s
r.350	Generator V Reg KP	
r.351	Generator V Reg Tl	
r.010	Delta Ref calibrator	%
r.011	Delta Ref analog	%
r.012	Delta ramp slope	%/s

6.2 Field Current Regulation (FCR)

This working mode allows to control the AVR output field current. In this case the AVR controls only the output current to the regulator excitation terminals, without considering other effects. This situation can be potentially dangerous.

This functioning mode could become useful during the regulator commissioning, or in case of troubleshooting activities.

FCR function will be activated setting P300=0.

As alternative it is possible to activate the FCR function programming the digital input I002=3, and closing the external contact.

Parameter	Description	Note
r.000	F. I digital	% compared to P.000
r.002	Ramp slope [s]	%/s
r.250	Field I Reg KP	
r.251	Field I Reg Tl	
r.010	Delta Ref Calibrator	%
r.011	Delta Ref analog	%
r.012	Delta ramp slope	%/s

6.3 Power Factor regulation (PF)

The AVR controls in automatic mode the power factor at generator terminals.

The PF function is active when P300= 1, and I002= 5; once the 52G digital input (generator in parallel) is closed, the PF function starts to work. Generator current reading is necessary to use this function. Be aware of the correct PF reading.

Parameter	Description	Note
r.400	Generator PF digital ref	
r.402	Ramp slope	
r.450	PF/VAR Reg KP	
r.451	PF/VAR Reg TI	
r.410	Delta Ref Calibrator	
r.411	Delta Ref analog	
r.412	Delta ramp slope	

6.4 Reactive power regulation (VAR)

The AVR controls in automatic mode the reactive power at generator terminals.

The VAR function is active when P300= 1, and I002= 6; once the 52G digital input (generator in parallel) is closed, the VAR function starts to work. Generator current reading is necessary to use this function. Be aware of the correct VAR reading.

Parameter	Description	Note
r.400	Generator PF digital ref	% compared to P.100 x P.110
r.402	Ramp slope	
r.450	PF/VAR Reg KP	
r.451	PF/VAR Reg TI	
r.410	Delta Ref Calibrator	
r.411	Delta Ref analog	
r.412	Delta ramp slope	

6.5 Digital reference adjustment by calibrator (Up/Down)

In AVR mode, by programmed digital inputs (I.000=1 increase, I.001=2 decrease) on CN3 connector, it is possible to adjust the nominal voltage set point in a range between -r.010% and +r.010%. The same function is available in FCR mode, in this case the UP/DOWN input is influencing the excitation current.

After closing of 52G (programmed as I.002=5 (Parallel + PF regulation)), the "increase" and "decrease" commands increase or decrease the Power Factor value.

After closing of 52G (programmed as I.002=6 (Parallel + VAR regulation)), the "increase" and "decrease" commands increase or decrease the Reactive Power value.

6.6 Digital reference adjustment by analog inputs

As above, using the analog inputs (Potentiometer or ±5Vdc) on CN3 connector, it is possible to adjust the set point in a range between -r.011% and +r.011%.

7 OPERATOR INTERFACE

In this chapter, it is described how parameters are managed by using the on-board programming keypad.

7.1 Control Keypad and display

MENU: allows to quit a parameter or a menu.

ENTER: allows to enter a parameter or a menu.

UP: allows to move from a parameter or menu to the following one and/or increase the value.

DOWN: allows to move from a parameter or menu to the previous one and/or decrease the value.

7.2 Navigating inside the menus

Once the S2014 is ON, the display shows automatically the parameter d100 (Generator voltage).

Example: how to change the rated voltage generator setting

7.3 Parameters Saving

IMPORTANT: even if the modifications on the parameters are immediately active, they are not automatically saved. To save them you need to use command "C.000" [save parameters].

7.4 Menu Description

7.4.1 Menu "D" – Display (readings)

DISPLAYS	Terminals	IPA	Description	[U.M.]	Min	Default	Max	Notes, values
Field data	d.000	0	Field Current	%	0,0	-	200,0	% of P.000
	d.020	1	Out Duty Cycle	%	0,0	-	100,0	
Generator data	d.100	2	Gener. V	%	0,0	-	-	% of P.100
	d.104	3	Gener. Freq.	Hz	0,00	-	440,0	
	d.110	4	Gener. Current	%	0,0	-	-	% of P.110
	d.111	5	Gener. Power Factor	-	0,25 c	-	0,25 i	Capacitive / Inductive
	d.120	6	Gener. Power S	%	0,0	-	-	% of P.100xP.110
	d.121	7	Gener. Power P	%	-d.120	-	d.120	% of P.100xP.110
	d.122	8	Gener. Power Q	%	-d.120	-	d.120	% of P.100xP.110
AVR data	d.950	9	FW ver. & rev.	-	-	-	-	xx.yy(hex)
	d.952	10	SN	-	-	-	-	y.nnn
	d.997	11	Heatsink Temp.	°C	-40	-	+115	
	d.997	12	AUX V	V	0,0	-	-	

7.4.2 Menu "r" – References and Regulators

REFERENCES & REGULATORS	Terminals	IPA	Description	[U.M.]	Min	Default	Max	Notes, values
Primary	r.000	200	F. I digital ref	%	0	0,0	P.001	% of P.000
regulator	r.002	201	Ramp slope	%/s	0,1	5,0	999,9	
	r.010 r.011 r.012	202 203 204	Delta Ref calib Delta Ref analog Delta ramp slope	% % %/s	0 0 0,1	0 20 1,0	200 200 10,0	
Field current regulator	r.250	205	F. I Reg KP	-	0,01	0,50	99,99	Related to Aux
	r.251	206	F. I Reg TI	1/(2*AuxF)	0,1	20,0	100,0	supply period
Generator voltage regulator	r.350 r.351	207 208	G. V Reg KP G. V Reg TI	- 1/(2*GenF)	0,01 0,1	0,50 20,0	99,99 100,0	Related to generator period
Secondary regulator	r.400 r.401 r.402	209 210 211	G. PF dig. ref G. VAR dig. ref Ramp slope	- % %/s	0,50c -100 0,1	1,00 0 1,0	0,50i 100 100,0	Capacitive / Inductive % of P.100xP.110
	r.410 r.411 r.412	212 213 214	Delta Ref calib Delta Ref analog Delta ramp slope	% % %/s	0 0 0,1	20 0 1,0	100 100 10,0	
PF,VAR	r.450	215	PF/VAR Reg KP	-	0,01	0,50	99,99	Related to
	r.451	216	PF/VAR Reg TI	10/(2*GenF)	0,1	20,0	100,0	generator period
Aux voltage	r.650	217	AuxV Reg KP	-	0,01	0,50	99,99	Related to Aux
Regulator	r.651	218	AuxV Reg TI	1/(2*AuxF)	0,1	20,0	100,0	Supply period
Limiters	r.900	219	OE/UE LIM Reg KP	-	0,01	0,25	99,99	Related to
Regulator	r.901	220	OE/UE LIM Reg	1/(F reg)	0,1	40,0	100,0	generator period

I/Os	Name	IPA	Description	[U.M.]	Min	Default	Max	Notes, values
Digital inputs	1.000	600	Dig inp 1 cnf	-	0	1	6	0 NONE 1 INCREASE 2 DECREASE
	I.001	601	Dig inp 2 cfg	-	0	2	6	
	1.002	602	Dig inp 3 cfg	-	0	5	6	3 FCR Remote enabling 4 52G: Parallel + DROOP 5 52G: Parallel + PF reg. 6 52G: Parallel +VAR reg.
Digital outputs	I.100	603	Dig out 1 cnf	-	0	3	4	0 NONE 1 FAULT 2 NOT FAULT 3 LIMIT 4 NO LIMIT
RS485	1.400	604	RS485 config	-	0	1	4	0 custom protocol 1 Modbus RTU 8N1 2 Modbus RTU 8E1 3 Modbus RTU 8O1 4 Modbus RTU 8N2
	I.401	605	RS485 bitrate	-	0	3	5	0 4800 1 9600 2 19200 3 38400 4 57600 5 115200
	1.402	606	RS485 node ID	-	1	1	247	
	1.403	607	RS485 delay	S	0,001	0,005	0,100	

7.4.3 Menu "I" – Inputs and Outputs

7.4.4 Menu "C" – Commands

COMMANDS	Name	IPA	Description	[U.M.]	Min	Default	Max	Notes, values
Utility commands	C.000 C.002	1600 1601	Params save Default Params reload	-	0 0	0 0	1 1	
	C.200	1602	Test step	-	-8192	0	8192	8192=100%
	C.201	1603	Test step type	-	0	1	4	1= Field I ref 2= Generator V ref 3= Generator PF ref 4= Generator VAR ref

7.4.5 Menu "P" – Parameters

This is the most important menu for normal operation. In the majority of the applications it will be necessary to access to the Parameter menu only.

PARAMETERS	Name	IPA	Description	[U.M.]	Min	Default	Max	Notes, values
Field excitation data	P.000 P.001 P.002 P.032	1000 1001 1002 1004	F. rated I F. OE Lim F. UE Lim F. OE Lim time	A dc % % s	1,0 100 0 1	5,0 150 5 10	12,0 250 50 240	% of P.000 % of P.000
Generator data	P.100 P.101	1005 1006	G. rated V G. max V	V rms %	50 105	400 120	500 120	% of P.100
	P.110	1007	G. rated I	A rms	0,20	2,5	5 <i>,</i> 00	(*)
	P.130 P.131 P.132	1008 1009 1010	G. V/f min freq G. V/f max freq G. V/f slope	Hz Hz %/Hz	20 P.130 1,0	30 45 2,0	150 250 4,0	
	P.160 P.161 P.162 P.163 P.164	1012 1013 1014 1015 1016	Q – lim @ P 0% Q – lim @ P 25% Q – lim @ P 55% Q – lim @ P 75% Q – lim @ P 100%	% % %	-100 -100 -100 -100 -100	-40 -35 -30 -25 -20	-5 -5 -5 -5	% of P.100 x P.110 % of P.100 x P.110 % of P.100 x P.110 % of P.100 x P.110 % of P.100 x P.110
	P.170 P.171	1017 1018	Q + lim @ P 0% Q + lim @ P 100%	% %	5 5	80 60	100 100	% of P.100 x P.110 % of P.100 x P.110
Power supply	P.250	1019	KeepAlive Field I	%	0	5	100	% of P.000 set 0 for PMG or other independent Power Supply
Control mode	P.300	1020	Primary reg.	-	0	1	1	0 FCR 1 AVR
Voltage Droop Compensation	P.400	1021	Voltage comp K	%	-10,0	0,0	10,0	
Access control	P.981	1022	Password	-	0	1	9999	For S2014 the password is disabled

(*) P.110 setting influences the power readings. Following example will help to understand how to manage this setting:

- Rated Generator Power = 500kVA
- Rated Generator Voltage=
- Rated Generator Current= 722A
- CT mounted on the Generator= 1000/5 (CT ratio = 200)

400V

With above configuration, the rated power of the generator (100%) is reached when the CT will read 722/200= 3.61A In this case it is correct to set P.110=3.61 A

8. TROUBLE SHOOTING

DANGER!

The AVR is NOT insulated from the power supply and from field circuit. The maintenance operations MUST be done ONLY when the AVR is disconnected and the protection devices are mounted and/or activated. Disconnect the AVR in case of High Voltage Test on the alternator windings.

8.1 First Inspection

When the system is shut-down, check the fastening of fast-on terminals on the AVR. Generally, check all connections to avoid loose contact.

8.2 Trouble shooting

The following instructions are supposed to help to find out the fault location within the whole excitation system. However, it is not possible to deal with all eventualities.

List of Possible Faults Checks, action
--

Machine is not exciting	
Field circuit interrupted	Check connection wiring
No electronics supply	 Measure power supply Aux - Com Check for tripped protective circuit-breaker Check the built-in fuse
Set point error	 Check operating mode Check programmable digital input setting and connection Check set point

Overvoltage during start-up	
 Overvoltage caused by voltage regulator 	 Measure the Generator voltage directly on the voltage sensing input Check configuration Check set point Check overvoltage threshold Check regulator settings

Unstable Output Voltage in no-load operation				
	Check operating mode			
Regulator error	 Check programmable digital input setting and connection 			
	Check set point			
	Check parameters of voltage regulator			
	 Check/adjust stability settings r.350 and r.351 			
Set point error	Unstable Increase/Decrease inputs			
	Unstable External analog input			
Control element fault	Check wiring for loose contacts, check input voltages, check field			

Unstable or Low Output Voltage under load operation				
Regulator error	 Compared excitation voltage with power supply voltage Check programmable digital input setting and connection Check parameters of voltage regulator Check/adjust stability settings r.350 and r.351 			
Set point error	Unstable Increase/Decrease inputsUnstable External analog input			
Control element fault	Check wiring for loose contacts			

Unstable parallel operation with grid Periodic oscillation of reactive and active power (instability)					
Not correct regulator settings	 Were changes made to the grid configuration? Are additional outputs, loads etc. installed? Yes: re-set regulator No: check parameters of Auto and PF, Var regulator Check/adjust stability settings 				

Irregular instability, i.e. sporadic over - or under excitation which is not caused by grid variation					
 Poor effect of the Droop influence on the voltage regulator or C.T. defective measurement 	 Check droop compensation setting Check external current transformer circuit Gen CB Closed Status not active Check programmable digital input setting and connection 				
 Some limiters are active: machine within inadmissible operating range 	Bring machine into normal operating range by adjusting the set point.Check setting of limiters				

Operating point cannot be adjusted	
	Check operating mode
Set point error	Check set point
	Check connections
	Check programmable analog and digitale input
Limiter active	 Bring machine into normal operating range by adjusting the set point
	Check setting of limiters

Problems with External (remote) controls			
No external control voltage	Measure control voltageCheck wiring		
 Configuration of the digital or analog inputs are not correct 	Check configuration		

8.3 Repairing

In case it is confirmed that the AVR is defective, we recommend to contact Beltrame CSE to agree about repairing conditions. We strongly recommend to avoid to return back any devices without previous agreement. The user is responsible for the correct packaging of the regulator.

9. CONNECTING DIAGRAMS

Only specially instructed personnel must carry out connection and repair activities.

Each person involved in the installation and commissioning of the S2014 has to have received the appropriate training or instructions and has thoroughly read and clearly understood the safety instructions reported in this manual.

9.1 Introduction

Basically, the S2014 AVR needs:

- A power supply source connected between AUX and COM
- A sensing input source, connected between COM and Vsense
- The connection of the exciter, between +ECC and -ECC

DANGER!

Following diagram shows a connection example of 3ph brushless alternator with internal auxiliary winding:

IMPORTANT!

CT has always to be connected in quadrature compared the sensing voltage. This means:

- With sensing voltage between L1 and L3, install the CT on phase L2 (as above)
- With sensing voltage between L1 and L2, install the CT on phase L3
- With sensing voltage between L2 and L3, install the CT on phase L1

CAUTION!

It is strongly recommended to completely disconnect the AVR in case of High Voltage Test on the alternator windings

9.2 Basic S2014 Connection Diagrams

Following diagram shows how to connect the S2014 to a low voltage generator with:

- Sensing voltage between phase-phase (max 500Vac), L1 and L3
- Aux power supply between phase and neutral (max 300Vac)
- CT mounted on L2

All other combinations can be obtained from this one.

9.3 S2014 Connection Diagrams with Low Voltage Alternator

Basic Connection Diagram for LV alternator: Sensing voltage: phase-phase (max 500Vac) Aux power supply: phase and neutral (max 300Vac)

LV alternator with Aux winding: Sensing voltage: phase-phase (max 500Vac) Aux power supply: from Aux winding (max 300Vac)

LV alternator with external power supply: Sensing voltage: phase-phase (max 500Vac) Aux power supply: from ext power supply (max 300Vac)

9.4 S2014 Connection Diagrams with Medium Voltage Alternator

Connection Diagram for MV alternator:

Sensing voltage: from Volt Transf. (max 500Vac) Aux power supply: from Volt Transf. (max 300Vac)

MV alternator with PMG:

Sensing voltage: from Volt Transf. (max 500Vac) Aux power supply: from PMG (max 300Vac)

MV alternator with Aux winding: Sensing voltage: from Volt Transf. (max 500Vac) Aux power supply: from Aux winding (max 300Vac) **MV alternator with external power supply:** Sensing voltage: from Volt Transf. (max 500Vac) Aux power supply: from ext. power supply (max 300Vac)

10. BELTRAME CONFIGURATOR: THE PC SOFTWARE

WARNING!

The PC software allows to modify the working mode and the settings of the AVR. The modification can be potentially dangerous. Only specially instructed personnel must carry out AVR's setting adjustments. The maintenance personnel must be informed about the emergency shutdown measures and must be capable of turning off the system in case of emergency.

The S2014 Config is useful during the regulator commissioning, or in case of troubleshooting activities.

10.1 Connection between AVR and PC

For the PC-AVR connection we recommend the following diagram, with USB isolator Using an USB/RS485 cable (Beltrame's production – available as optional):

10.2 Installation and Communication setup

The S2014Config is distributed as a zip file. Once unzipped, the software will create a folder with inside the S2014Config.exe:

Beltrame CSE > AVR > S2014 > S2014Confi	g_v0.3.3.0		
Nome	Ultima modifica	Tipo	Dimensione
ParamSave	14/10/2019 13:48	Cartella di file	
TrendSave	03/03/2016 17:01	Cartella di file	
ParamDB.csv	24/03/2016 16:15	File con valori sep	5 KB
S2014Config.exe	24/03/2016 15:43	Applicazione	4.050 KB
S2014Config.ini	26/02/2014 14:01	Impostazioni di co	1 KB

To run the program, double click on S2014Config.exe. It will open the Comm window. To operate it is necessary to establish the communication between PC and AVR, see the following instructions:

10.3 Parameters setting: P.xxx and procedure

	RW	R Page W	/Page	RAIWA	All Sa	ve Defaul	t	List Load Li
Hz Gen. Freq	D R	I P						
Gen. I	Name	Value	Unit	Min	Det	Max	IPa	Description
	P.000	5.0	A dc	1.0	5.0	12.0	1000	F. rated I
PF	P.001	150	79	100	150	250	1001	F. OE LIM
	P.002	5	70		10	30	1002	F. OE Lim
% Gen. S	P.032	400	5 V rme	1	100	240	1004	C rated V
% Gen P	P.101	-100	96	105	120	120	1005	G. may V
70 Gen. P	P.110	5.00	Arms	0.20	2.50	5.00	1005	G. rated I
% Gen. Q	P.130	30	Hz	20	30	150	1007	G. V/f min freq
	P.131	45	Hz	P.130	45	250	1008	G. V/f max freq
	P.132	2.0		1.0	2.0	4.0	1009	G. V/f slope
	P.160	-40	%	-100	-40	-5	1010	Q-lim @ P 0%
	P.161	-35	%	-100	-35	-5	1011	Q-lim @ P 25%
Field	P.162	-30	%	-100	-30	-5	1012	Q-lim @ P 50%
	P.163	-25	%	-100	-25	-5	1013	Q-lim @ P 75%
	P.164	-20	%	-100	-20	-5	1014	Q-lim @ P 100%
	P.170	80	%	5	80	100	1015	Q+lim @P0%
	P.171	60	%	5	60	100	1016	Q+lim @P 100%
	P.250	5	%	0	5	100	1017	Keep Alive F. I
	P.300	1	-	0	1	1	1018	Primary reg.
	P.400	0.0	%	-10.0	0.0	10.0	1019	Voltage comp K
Heatsink T	P.981	1	-	0	1	9999	1020	Password

Recommended procedure for parameters modification:

- 1. **R All**: download all the parameters (P, R, I, D) from AVR to PC.
- 2. List Save: save the original AVR setting as a .pli file inside the PC (inside the ParamSave folder).
- 3. Modify the requested parameter. The modification is immediately active, but it is not stored inside the AVR memory. This means that if you switch OFF the AVR, the modification will be lost.
- 4. **Save**: If the modification is correct press Save to store the new setting inside the AVR. The modification will be active even after AVR switching off.
- 5. List Save: to save a copy of the new setting inside the PC (with a different name compared the original .pli filename).
- 6. List Load: to upload from the PC the suitable parameters list

Other commands:

- 7. **R Page/W Page**: to read / write a single page.
- 8. **R /W**: to read / write a single value.

Comm Trend 1/0 Regulator Par	ameters		
R W R Page W Page	RAII WAI	Save Default	List Load List Save
D R I P			1

10.4 Parameters setting: P.xxx

Remaining on the Parameters windows, click on the	e I label to access to I.xxx setting:
---	---------------------------------------

S2014 Config v0.3.3.0 - 14/10/2019 11:58:29								- 🗆 🗙		
<u>File</u> <u>H</u> elp										
	Comm Trend I/O Regulator Parameters									
% Gen. V	R W R Page W Page RAII W All Save Default							List Load List Save		
Hz Gen. Freq.	DR	I P	1							
% Gen. I	Name	Value	Unit	Min	Def	Max	IPa	Description ^		
	1.000	1	-	0	1	6	600	Dig inp 1 cnf		
PF	I.001	2	-	0	2	6	601	Dig inp 2 cfg		
	1.002	5	-	0	5	6	602	Dig inp 3 cfg		
% Gen. S	I.100	3	-	0	3	4	603	Dig out 1 cfg		
	1.400	1	-	0	1	4	604	RS485 config		
% Gen. P	I.401	3	-	0	3	5	605	RS485 bitrate		
	1.402	1		1	1	247	606	RS485 node ID		
Gen. Q	1.404	0.005	s	0.000	0.005	0.100	607	RS485 delay		
AUR										

As above, remaining on the Parameters windows, click on the R label to access to R.xxx setting:

		I P						
W Con I	Name	Value	Unit	Min	Def	Max	IPa	Description
% Gen. 1	R.000	0.0	%	0.0	0.0	P.001	200	F. I digital ref
PF	R.002	5.0	%/s	0.1	5.0	999.9	201	Ramp slope
	R.010	0	%	0	0	200	202	Delta Ref calib
Gen S	R.011	20	%	0	20	200	203	Delta Ref analog
	R.012	1.0	%/s	0.1	1.0	20.0	204	Delta ramp slope
% Gen. P	R.250	0.50	-	0.01	0.50	99.99	205	F. I Reg KP
	R.251	20.0	1/(2*AuxF	0.1	20.0	100.0	206	F. I Reg TI
% Gen. Q	R.350	0.50	-	0.01	0.50	99.99	207	G. V Reg KP
1 mm.	R.351	20.0	1/(2*GenF	0.1	20.0	100.0	208	G. V Reg TI
	R.400	1.00		0.50c	1.00	0.50i	209	G. PF dig. ref
	R.401	0	%	-100	0	100	210	G. VAR dig. ref
	R.402	1.0	%/s	0.1	1.0	100.0	211	Ramp slope
% Field I	R.410	20	%	0	20	100	212	Delta Ref calib
	R.411	0	%	0	0	100	213	Delta Ref analog
	R.412	1.0	%/s	0.1	1.0	20.0	214	Delta ramp slope
	R.450	0.50	-	0.01	0.50	99.99	215	PF/VAR Reg KP
	R.451	20.0	10/(2*Gen	0.1	20.0	100.0	216	PF/VAR Reg TI
	R.650	0.50	-	0.01	0.50	99.99	217	AuxV Reg KP
	R.651	20.0	1/(2"AuxF	0.1	20.0	100.0	218	AuxV Reg TI
	R.900	0.25	-	0.01	0.25	99.99	219	OE/UE Lim reg KP
C Heatsink T	R.901	40.0	1/(F reg)	0.1	40.0	100.0	220	OE/UE Lim reg TI

10.5 Parameters setting: D.xxx

The D.xxx windows allows to read all the values available on the on board display. To update the values press R Page. The readings can help the troubleshooting activities.

S2014 Config v0.3.3.0 - 14/10/2019 11:59:13								- 🗆	×
<u>File</u> <u>H</u> elp									
	Comm Trend I/O Regulator Parameters								
% Gen. V	BW	R Page	/ Page	RAIV	/ AIL	Save Defaul	1	List Load List S	Save
		Second Sec					_		
En in in the den. Fred.	D R	P							
	Name	Value	Unit	Min	Def	Max	IPa	Description	^
% Gen. I	D.000	11.5	%	0.0	-	200.0	0	Field Current	
PF	D.020	8.8	%	0.0	-	100.0	1	Out Duty Cyde	
	D.100	100.2	%	0.0	-	-	2	Gener. V	
% Gen S	D.104	51.04	Hz	0.00	-	440.00	3	Gener. Freq.	
	D.110	0.21	%	0.00			4	Gener. Current	
% Gen. P	D.111	1.00	-	0.25c	-	0.25	5	Gener. PowerFact	
	D.120	0.0	%	0.0		-	6	Gener. Power S	
% Gen. Q	D.121	0.0	%	0.0			7	Gener. Power P	
	D.122	0.0	%	-	-	-	8	Gener. Power Q	
in the second	D.950	04.00					9	FW ver. & rev.	
	D.952	7.009	-	-		-	10	SN	
	D.997	24	°C	-5	-	110	11	Heatsink Temp.	
% Field I	D.999	232.1	Vac	0.0	-	-	12	ALIX V	-

10.6 Regulator Windows

Selecting the Regulator window, you can access/read the following values:

10.7 Input/Output window

Selecting the I/O window, you can access/read the following values:

10.8 Trend window

Selecting the Trend window, you have available a powerful tool for commissioning and/or troubleshooting:

Above trend shows some step tests (+5% on the reference voltage) effect.

Tel. +39 049 5965127

beltramecse.com

BELTRAME C.S.E. s.r.l | Via San Pio X, 104 | 35015 Galliera Veneta PD - Italy info@beltramecse.com